Sequence Queries on Temporal Graphs
نویسنده
چکیده
Graphs that evolve over time are called temporal graphs. They can be used to describe and represent real-world networks, including transportation networks, social networks, and communication networks, with higher fidelity and accuracy. However, research is still limited on how to manage large scale temporal graphs and execute queries over these graphs efficiently and effectively. This thesis investigates the problems of temporal graph data management related to node and edge sequence queries. In temporal graphs, nodes and edges can evolve over time. Therefore, sequence queries on nodes and edges can be key components in managing temporal graphs. In this thesis, the node sequence query decomposes into two parts: graph node similarity and subsequence matching. For node similarity, this thesis proposes a modified tree edit distance that is metric and polynomially computable and has a natural, intuitive interpretation. Note that the proposed node similarity works even for inter-graph nodes and therefore can be used for graph de-anonymization, network transfer learning, and cross-network mining, among other tasks. The subsequence matching query proposed in this thesis is a framework that can be adopted to index generic sequence and time-series data, including trajectory data and even DNA sequences for subsequence retrieval. For edge sequence queries, this thesis proposes an efficient storage and optimized indexing technique that allows for efficient retrieval of temporal subgraphs that satisfy certain temporal predicates.For this problem, this thesis develops a lightweight data management engine prototype that can support time-sensitive temporal graph analytics efficiently even on a single PC.
منابع مشابه
Dissertation SEQUENCE QUERIES ON TEMPORAL GRAPHS
Graphs that evolve over time are called temporal graphs. They can be used to describe and represent real-world networks, including transportation networks, social networks, and communication networks, with higher fidelity and accuracy. However, research is still limited on how to manage large scale temporal graphs and execute queries over these graphs efficiently and effectively. This thesis in...
متن کاملA Query Based Approach for Mining Evolving Graphs
An evolving graph is a graph that can change over time. Such graphs can be applied in modelling a wide range of real-world phenomena, like computer networks, social networks and protein interaction networks. This paper addresses the novel problem of querying evolving graphs using spatio-temporal patterns. In particular, we focus on answering selection queries, which can discover evolving subgra...
متن کاملEfficient Processing of Reachability and Time-Based Path Queries in a Temporal Graph
A temporal graph is a graph in which vertices communicate with each other at specific time, e.g., A calls B at 11 a.m. and talks for 7 minutes, which is modeled by an edge from A to B with starting time “11 a.m.” and duration “7 mins”. Temporal graphs can be used to model many networks with timerelated activities, but efficient algorithms for analyzing temporal graphs are severely inadequate. W...
متن کاملRDF-TX: A Fast, User-Friendly System for Querying the History of RDF Knowledge Bases
Knowledge bases that summarize web information in RDF triples deliver many benefits, including providing access to encyclopedic knowledge via SPARQL queries and end-user interfaces. As the real world evolves, the knowledge base is updated and the evolution history of entities and their properties becomes of great interest to users. Thus, users need query tools of comparable power and usability ...
متن کاملBehavior Query Discovery in System-Generated Temporal Graphs
Computer system monitoring generates huge amounts of logs that record the interaction of system entities. How to query such data to better understand system behaviors and identify potential system risks and malicious behaviors becomes a challenging task for system administrators due to the dynamics and heterogeneity of the data. System monitoring data are essentially heterogeneous temporal grap...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016